Halini tidak lain karena keluarga adalah kelompok orang yang terikat dalam hubungan darah. Tidak heran, jika keluarga disebut sebagai sistem pendukung yang terbaik. Di mana antar anggota keluarga akan saling memberikan dukungan baik dan penuh dalam segala kondisi. Termasuk saat Anda mengalami masalah dalam hidup, tentu ayah, ibu, kakak, atau
13 HUBUNGAN DUA GARIS A. Hubungan antara dua garis 1. Garis-garis sejajar dan tegak lurus Misalkan: garis 1 adalah , dan garis 2 adalah maka: garis sejajar garis , jika garis tegak lurus garis , jika BUKTI: Misalkan dan adalah dua garis yang masing-masing tidak sejajar sumbu koordinat, dan keduanya saling tegak lurus.
Garistransversal adalah garis yang memotong dua buah atau lebih garis lain. Apabila Perhatikan gambar berikut! Gambar 16. Dua garis tidak sejajar yang dipotong oleh satu garis transversal sejajar dipotong satu garis transversal dan hubungan dua garis dapat diketahui sudut-sudut yang mempunyai besar yang sama dan sudut berpelurus. 3 4 1 2
Padahal∠2 = 180° – ∠P3 (berpelurus), sehingga. ∠Q2 = ∠P2 = 180° – ∠P3 atau. ∠P3 + ∠Q2 = 180°. Tampak bahwa jumlah ∠P3 dan ∠Q2 adalah 180°. Jika dua buah garis sejajar dipotong oleh garis lain maka jumlah sudut-sudut dalam sepihak adalah 180°. Dengan cara yang sama, dapat dibuktikan bahwa ∠P4 + ∠Q1 = 180°.
Sehingga hubungan antara gradien 2 buah persamaan garis itu dapat di nyatakan dalam persamaan sebagai berikut: m g = m h. 2. Garis Yang Saling Tegak Lurus. Gradien dari dua buah garis yang saling tegak lurus juga mempunyai hubungan. Hubungan dari dua buah garis tersebut di nyatakan jika gradien garis kedua adalah lawan dari kebalikan gradien
Berikutulasannya: Garis lurus (Generalization), menunjukan hubungan Hubungan ini menggambarkan dua kelas yang sifatnya statis atau memiliki atribut tambahan berupa kelas lainnya. tetapi berdiri masing-masing. Contohnya: Perpustakaan – Buku. Pewarisan; Hubungan pewarisan dalam class diagram adalah hubungan secara general dan mewarisi
Md7B. Hubungan antar garis di mana dua garis terlihat menjadi satu garis disebut berimpit. Simak penjelasan berikut! PembahasanHubungan Dua Garis 1. Dua garis sejajar Dua garis dikatakan sejajar jika kedua garis tidak akan pernah saling berpotongan saat diperpanjang sampai tak hingga. Dua garis sejajar dinotasikan dengan "//". Perhatikan gambar a! 2. Dua garis berpotongan Dua garis dikatakan berpotongan jika kedua garis bertemu di satu titik potong. Perhatikan gambar b! Garis AD dan DC dikatakan saling berpotongan. 3. Dua garis berimpit Dua garis dikatakan berimpit jika kedua garis saling menutupi sehingga hanya terlihat satu garis saja. Perhatikan gambar c! Garis FG dan TW dikatakan beimpit. 4. Dua garis bersilangan Dua garis dikatakan bersilangan jika kedua garis tidak terletak pada satu bidang datar dan tidak akan berpotongan jika diperpanjang. Perhatikan gambar d! Garis KR dan PM dikatakan saling lebih lanjut1. Menganalisa gambar hubungan dua garis Soal dua garis berpotongan JawabanKelas 7Mapel MatematikaBab Garis dan SudutKode Kata kunci garis, sudut, hubungan, kedudukan, berpotongan, berimpit, sejajar
Pembelajaran mengenai garis dipelajari pada kelas IV sekolah dasar. Dalam kehidupan sehari-hari beberapa benda yang ada di sekitar kita yang menunjukkan garis. Misalnya saja benda yang menunjukan garis yang sejajar antara lain Rel kereta api, Senar gitar, Pagar rumah, Pohon di pinggir jalan., Zebra Cross. Sedangkan benda yang menunjukkan garis berpotongan diantaranya adalah Jalan tol, Lintasan atletik, Roler Coaster, tower cellular, Jembatan dan besi yang dimaksud dengan garis? Saat menggambar kumpulan titik-titik dan ketika tidak ada lagi jarak antar titiknya akan membentuk garis. Jadi garis adalah kumpulan titik-titik yang banyaknya tak terhingga yang saling bersebelahan dan memanjang ke kedua Bagian Bagian GarisBagian bagian garis terdiri dari ruas garis, dan sinar garis. Ruas garis atau segmen garis adalah garis yang dibatasi dua titik di kedua ujungnya. Perhatikan gambar di bawah iniTitik A dan titik B serta titik-titik diantara A dan B membentuk suatu ruas garis garis adalah ruas garis yang salah satu ujungnya dapat diperpanjang tanpa batas. Pada gambar di atas Sinar garis AB atau ABAda beberapa bentuk garis diantaranya adalah garis lurus, garis lengkung, garis vertikal dan garus horizontal. Berikut inipenjelasan mengenai beberapa bentuk lurus adalah ruas garis yang kedua ujungnya dapat diperpanjang tanpa lengkung adalah garis yang sama sekali tidak mempunyai bagian lurus atau menyiku dan semua titik-titiknya terletak pada sebuah bidang kedudukannya, garis dibedakan menjadi dua yaitu Garis horizontal. Garis horizontal adalah garis yang arahnya mendatar/lurus. Garis vertikal. Garis vertikal adalah garis yang arahnya tegakSimak video hubungan antar garis berikut ini !Ayo Mencoba1. Berilah tanda ✓ pada gambar yang merupakan garis lurus dan tanda x yang bukan garis lurus!2. Berilah nama pada jenis garis berikut!3. Sebutkan 5 contoh benda di sekitarmu yang berbentuk garis lurus!Beberapa contoh benda berbentuk garis lurus diantarnya adalah penggaris, pensil, tongkat pramuka, permukaan meja, dan daun Hubungan Antar GarisMacam-macam hubungan antargaris sebagai berikut. Hubungan antara dua garis dapat berupa sejajar, berpotongan, dan Garis SejajarDua garis yang berjarak sama dalam satu bidang datar dan tidak pernah berpotongan meskipungaris tersebut diperpanjang sampai tak hingga dikatakan dua garis saling untuk dua garis saling sejajar adalah “//”. Lintasan kereta api merupakan contoh dua garis lurus yang jaraknya selalu gambar di atas, garis m sejajar dengan garis n, dapat ditulis m // Garis BerpotonganDua garis dalam satu bidang datar dan berpotongan disalah satu titik dikatakan dua garis saling berpotongan. Sedangkan dua garis yang saling berpotongan dan membentuk sudut 90° dikatakan dua garis saling berpotongan tegak simbol matematika garis tegak lurus disimbolkan dengan simbol perpendikular "⊥", misalnya garis P tegak lurus dengan Q dapat ditulis P ⊥ Q. Contohnya adalah dua garis yang membentuk kincir angin dan saling memotong pada porosnya..3. Garis BerimpitDua garis yang terletak pada satu garis lurus sehingga hanya terlihat sebagai satu garis dikatakan dua garis saling berimpit. Dua garis yang berimpit dapat dilihat pada jam dinding yang menunjukan pukul Pada pukul terlihat pada jarum jam panjang dan jarum jam pendek saling Garis BersilanganJika dua buah garis tidak sejajar dan tidak berada dalam satu bidang maka kedua garis tersebut dikatakan gambar di atas, dapat terlihat bahwa garis EH bersilangan dengan garis Mencoba1. Perhatikan gambar bangun datar di bawah ini. Berikan nama pada setiap segmen garis bangun datar di bawah ini misal garis a, garis k, garis dan lain-lain. Temukan segmen garis manakah yang sejajar? Segmen garis-garis manakah yang berpotongan? Manakah segmen garis-garis yang berpotongan tegak lurus? Adakah segmen garis yang berhimpit?2. Buatlaha. tiga pasang garis yang saling sejajarb. tiga pasang garis yang saling berpotonganc. dua pasang garis yang saling tegak lurusd. dua pasang garis yang saling berimpit3. Ayah Meli akan membuat tangga dari bambu seperti pada gambar di bawah. Jika tiap ruas bambu panjangnya 30 cm, berapakah panjang bambu yang dibutuhkan ayah Meli untuk membuat tangga tersebut?DiketahuiPanjang ruas bambu = 30 ruas bambu yang dibutuhkan 9+8+9 = 26 ruasDitanyakan Panjang seluruh ruas bambuJawab26 x 30 = 780 cmJadi panjang bambu yang dibutuhkan ayah Meli adalah 780 cm atau 7,8 m.
Hai adik-adik kelas 4 SD, berikut ini Osnipa akan membahas Soal tentang Materi Garis dan Hubungan Antar Garis dan Pembahasan. Semoga pembahasan ini bermanfaat. 1. Hubungan antar garis yang ditunjukkan pada gambar di bawah adalah …. A. Saling sejajarB. Saling berpotonganC. Saling berhimpitD. Saling berpotongan tegak lurus 2. Hubungan antar garis yang ditunjukkan pada gambar berikut adalah …. A. Saling sejajarB. Saling berpotonganC. Saling berhimpitD. Saling berpotongan tegak lurus 3. Hubungan antar garis yang ditunjukkan pada gambar di bawah adalah …. A. Saling sejajarB. Saling bertolak belakangC. Saling berhimpitD. Saling berpotongan tegak lurus 4. Hubungan antar garis yang ditunjukkan pada gambar berikut adalah …. A. Saling sejajarB. Saling bertolak belakangC. Saling berhimpitD. Saling berpotongan tegak lurus 5. Hubungan antar garis sejajar ditunjukkan oleh gambar nomor …. A. 1B. 2C. 3D. 4 6. Hubungan antar garis berhimpit ditunjukkan oleh gambar nomor …. A. 1B. 2C. 3D. 4 7. Perhatikanlah gambar kubus berikut! Hubungan antar garis AD dengan garis BC adalah …. A. Saling sejajarB. Saling berpotonganC. Saling berhimpitD. Saling berpotongan tegak lurus 8. Perhatikanlah gambar kubus berikut! Hubungan antar garis AD dengan garis AB adalah …. A. Saling sejajarB. Saling berpotonganC. Saling berhimpitD. Saling berpotongan tegak lurus 9. Perhatikan gambar berikut! Garis yang sejajar dengan AD adalah garis …. A. DCB. ABC. BDD. BC 10. Perhatikan gambar berikut! Garis AC berpotongan dengan garis CD di titik …. A. AB. BC. CD. D 1. Perhatikan gambar berikut! Hubungan antara dua garis yang ditunjukkan pada gambar tersebut adalah …. A. SejajarB. BerhimpitC. BerpotonganD. Berpotongan tegak lurus 2. Perhatikan gambar berikut! Hubungan antar garis yang ditunjukkan oleh gambar tersebut adalah …. A. SejajarB. BerhimpitC. BerpotonganD. Berpotongan tegak lurus 3. Perhatikan gambar berikut! Hubungan antar garis yang ditunjukkan oleh gambar tersebut adalah …. A. SejajarB. BerhimpitC. BerpotonganD. Berpotongan tegak lurus 4. Perhatikan gambar berikut! A. SejajarB. BerhimpitC. BerpotonganD. Berpotongan tegak lurus 5. Perhatikan gambar berikut! Hubungan antar garis sejajar ditunjukkan oleh gambar nomor …. A. IB. IIC. IIID. I dan II 6. Perhatikan gambar berikut! Hubungan antar garis berpotongan tegak lurus ditunjukkan oleh gambar nomor …. A. IB. IIC. IIID. I dan II 7. Perhatikan gambar berikut! Hubungan antar garis berhimpit ditunjukkan oleh gambar nomor …. A. IB. IIC. IIID. I dan II 7. Perhatikanlah gambar balok berikut! Hubungan antar garis CD dengan garis DE adalah ….A. SejajarB. BerhimpitC. BerpotonganD. Berpotongan tegak lurus 8. Perhatikanlah gambar balok berikut! Hubungan antar garis CF dengan garis HI adalah ….A. SejajarB. BerhimpitC. BerpotonganD. Berpotongan tegak lurus 9. Perhatikan gambar berikut! Garis EG sejajar dengan garis ….A. CAB. HFC. DBD. AB 10. Perhatikan gambar berikut! Garis AC berpotongan tegak lurus dengan garis ….A. FHB. BDC. CBD. EG Demikian pembahasan mengenai Soal Materi Garis dan Hubungan Antar Garis dan Pembahasan. Semoga bermanfaat. Pengunjung 13,632
Hubungan Dua Garis Lurus padaPersamaan Garis Lurus Dalam hubungannya dengan materi garis, terdapat hubungan antargaris. Hubungan antar garis antara lain meliputi garis-garis yang sejajar, garis-garis yang berpotongan, dan garis-garis yang bersilangan. Dalam materi persamaan garis lurus ini akan dipelajari hubungan garis yang sejajar dan garis berpotongan tegak lurus. Dua garis sejajar dan garis berpotongan tegak lurus dapat digambarkan seperti ingin mengetahui kedudukan garis, maka perhatikan pada gradien dari kedua garis tersebut. Misalkan gradien garis a = m1 dan gradien garis b = m2 maka berlaku 1. Kedua garis sejajar jika dan hanya jika m1 = m2 2. Kedua garis berpotongan tegak lurus jika dan hanya jika m1 . m2 = -1 atau m1 = 21 m − Lebih jelasnya perhatikan contoh berikut. Tentukan gradien garis yang memiliki kedudukan sebagai berikut 1. Sejajar dengan garis y = 3x + 5 2. Sejajar dengan garis 2x + 5y = 10 3. Sejajar dengan garis 4x - 9y = 45 4. Sejajar dengan garis 6x + 3y - 15 = 0 5. Sejajar dengan garis yang melalui titik 2,1 dan 4, 9 6. Tegak lurus dengan garis y = 5x – 12 7. Tegak lurus dengan garis 4x - 2y = 17 8. Tegak lurus dengan garis 3x + 5y = 18 9. Tegak lurus dengan garis yang melalui titik 0,3 dan 3, 10 10. Tegak lurus dengan garis yang melalui titik -4,2 dan -1, -7. Jawaban Untuk nomor 1 sampai dengan 5 kedudukan garisnya sejajar. Berarti kita mencari gradien yang sama dengan gradien garis-garis tersebut. 1. Garis y = 3x memiliki gradien 3. Jadi, gradien garis yang sejajar garis tersebut adalah 3. 2. Garis 2x + 5y = 10 memiliki gradien -2/5. Jadi, gradien garis yang sejajar garis tersebut adalah 2/5. 3. Garis 4x - 9y = 45 memiliki gradien 4/9. Jadi, gradien garis yang sejajar garis tersebut adalah 4/9. 4. Garis 6x + 3y - 15 = 0 memiliki gradien -2. Jadi, gradien garis yang sejajar garis tersebut adalah -2. 5. Garis yang melaui titik 2,1 dan 4, 9 memiliki gradien 4. Jadi, gradien garis yang sejajar garis tersebut adalah 4. Untuk nomor 6 sampai dengan 10 kedudukan garisnya saling tegak lurus. Berarti kita mencari gradien apabila dikalikan hasilnya -1. Atau gradien baru yang sama dengan gradien garis-garis tersebut. 6. Garis y = 5x - 12 memiliki gradien 5. Jadi, gradien garis yang tegak lurus terhadap garis tersebut adalah -1/5. 7. Garis 4x - 2y = 17 memiliki gradien 2. Jadi, gradien garis yang tegak lurus terhadap garis tersebut adalah -1/2. 8. Garis 3x + 5y = 18 memiliki gradien -3/5. Jadi, gradien garis yang tegak lurus terhadap garis tersebut adalah 5/3. 9. Garis yang melalui titik 0,3 dan 3, 10 memiliki gradien 7/3. Jadi, gradien garis yang tegak lurus terhadap garis tersebut adalah -3/7. 10. Garis yang melalui titik -4,2 dan -1, -7 memiliki gradien -3. Jadi, gradien garis yang tegak lurus terhadap garis tersebut adalah 1/3. Setelah tahu dan paham tentang cara menentukan gradien pada hubungan garis yang sejajar dan tegak lurus, mari melanjutkan tentang cara menentukan persamaan garis diingat bahwa ketika akan menentukan persamaan garis lurus, tentukan dahulu gradien garis dan koordinat titik yang akan dilalui. Dalam menentukan persamaan garis lurus, kita akan banyak menggunakan rumus dasar y - y1 = mx - x1. Marilah membahas beberapa contoh soal dan pembahasannya berikut ini. 1 Tentukan persamaan garis lurus yang sejajar dengan garis y = 3x + 5 dan melalui titik 2, -1. Jawaban Gradien garis y = 3x + 5 mempunyai gradien 3. Sehingga kita mencari persamaan garis yang bergradien 3 dan melalui titik 2, -1. y - y1 = mx - x1 y - -1 = 3x - 2 y + 1 = 3x – 6 y = 3x - 6 – 1 y = 3x – 7 Jadi,persamaan garis yang sejajar garis y = 3x + 5 dan melalui titik 2, -1 adalah y = 3x - 7. 2 Tentukan persamaan garis yang melaui titik -3, 2 dan sejajar dengan garis 2x + 4y - 9 = 0. Jawaban Gradien garis 2x + 4y - 9 = 0 adalah -1/2. Sehingga kita akan mencari persamaan garis lurus yang bergradien -1/2 dan melalui titik -3, 2 y - y1 = mx - x1 y - 2 = -1/2x - -3 2y - 4 = -x + 3 2y - 4 = -x – 3 2y + x - 4 +3 = 0 2y + x - 1 = 0 x + 2y - 1 = 0Jadi, persamaan garis yang melaui titik -3, 2 dan sejajar dengan garis 2x + 4y - 9 = 0adalah x + 2y - 1 = 0. 3 Tentukan persamaan garis lurus yang tegak lurus dengan garis y = -3x + 4 dan melalui titik 1, 5. Jawaban Gradien garis y = -3x + 4 adalah -3. Gradien garis yang tegak lurus garis tersebut adalah 1/3. Oleh karena itu, kita akan mencari persamaan garis yang bergradien 1/3 dan melalui titik 1, 5 y - y1 = mx - x1 y - 5 = 1/3x - 1 3y - 15 = x – 1 3y - 15 - x + 1 = 0 3y - x - 14 = 0 -x + 3y - 14 = 0Jadi, persamaan garis lurus yang tegak lurus dengan garis y = -3x + 4 dan melalui titik 1, 5 adalah -x + 3y - 14 = 0 4 Perhatikan gambar persamaan garis k. Jawaban Garis yang melaui titik 0,2 dan 10, 7 memiliki gradien 1/2. Garis k tegak lurus dengan garis tersebut. Sehingga gradien garis k adalah -2. Sehingga persamaan garis k adalah garis yang melalui titik 6, 0 dan bergradiem -2. y - y1 = mx - x1 y - 0 = -2x - 6 y = -2x + 6 Jadi, persamaan garis k adalah y = -2x+ 65 Perhatikan gambar Garis yang melaui titik 0,4 dan 6, 0 memiliki gradien -2/3. Garis h sejajar dengan garis tersebut. Sehingga gradien garis h adalah -2/3. Sehingga persamaan garis h adalah garis yang melalui titik 4, 6 dan bergradiem -2/3. y - y1 = mx - x1 y - 6 = -2/3x - 4 3y - 6 = -2x - 4 3y - 18 = -2x + 8 3y + 2x - 18 - 8 = 0 3y + 2x - 26 = 0 Jadi, persamaan garis h adalah 3y + 2x - 26 = 0
Hai adik-adik ajar hitung, hari ini kita akan melanjutkan materi yang kemarin ya.. untuk kalian yang ketinggalan materi kemarin, bisa klik linknya DISINI. Langsung kita mulai ya..Berikut adalah hubungan sudut pada dua garis sejajara. Sudut-sudut sehadapDua buah sudut sehadap memiliki besar yang sama. Perhatikan ilustrasi berikut iniPada gambar di atas, pasangan sudut yang sehadap adalah hubungan dua garis berikut adalah